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Given a mean-square continuous stochastic vector process y with stationary increments
and a rational spectral density ® such that ®(ec) is finite and nonsingular, consider the problem
of finding all minimal Gauss-Markov representations (stochastic realizations) of y. All such
realizations are characterized and classified with respect to deterministic as well as probabilistic
properties. It is shown that only certain realizations (internal stochastic realizations) can be
determined from the given output process y. All others (external stochastic realizations) require
that the probability space be extended with an exogeneous random component. A complete
characterization of the sets of internal and external stochastic realizations is provided. It is shown
that the state process of any internal stochastic realization can be expressed in terms of two
steady-state Kalman-Bucy filters, one evolving forward in time over the infinite past and one
backward over the infinite future. An algorithm is presented which generates families of external

realizations defined on the same probability space and totally ordered with respect to state
covariances.
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1. Introduction :
|

One of the most common models of random phenomena in control theory is provided by

the linear stochastic system

dx = Axdt + Bdw (1.1a)
dz = Cxdt +Ddw , (1.1b)

where A, B, C and D are constant matrices of dimensions nxn, nxk, mxn and mxk respectively,
and w is a k-dimensional mean-square continuous stochastic process with zero mean, stationary i

orthogonal increments, and w(0) = 0. Here we shall assume that w is defined on the whole real

line R, thatis

E{w(t)} =0 forall tER
E{w(t)w(s)'} =% {|t| +|s| — |t —s|}]

11.2)

[35; p. 51], where E{+} denotes mathematical expectation and prime (') transposition. (All
vectors without prime are column vectors.) For later reference, let W), denote the class of all such |i

orthogonal increment processes, the index referring to the dimension; more generally we shall say 3

that the process is of class (. Moreover, we assume that A is a stability matrix, i.e. all the eigen- |
values of A are situated in the left complex half-plane; we shall write Re{A(A)} <O for short. I3
(

This assumption will insure that (1.1a) has the unique solution 19

t
xi = [ A gawin (1.3 ;,

-—00 i

on the real line, where the integral is defined in quadratic mean. This is an n-dimensional vector i
process. If, in addition, we assume that z(0) = 0, the m-dimensional process z can be determined

uniquely by integrating (1.1b). We shall call x the state process, w the input process and z the

g~ output process. Clearly the state process x is (wide sense) stationary, i.e. the state covariance (3
matrix 1
. {
P=E{x(t)x(t)'} (1.4) ;
does not depend on t, and it satisfies the Liapunov equation 1
AP +PA'+BB'=0 . (g e sn ;
(See e.g. [35).) The output process z has stationary increments. N r :
Each wE W, has a unique spectral representation (Rsmmess 3
. _lwt wgh- ‘

wit) = L' =1 awiw) e =

7 1 |
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[12; p. 205), where dw is an orthogonal stochastic measure such that E {dW(w)dW(w)} = Idw.

(Here t denotes complex conjugation and transposition.) Then (1.3) may be written
- <)

x(t) 'feiwt(iwl—A)-1Bd\7v(w) . (1.7a)

—00

(Indeed, making the substitution (sl — A= :— [T+ A(sl — A)"] , (1.7a) is seen to satisfy (1.1a).)
Inserting (1.7a) into (1.1b) and integrating yields

iwt ;
z(t)’fe - ! Wliw)dw(w) , (1.7b)
—20 " {
where
W(s)=C(si—- A)~1B+D. (1.8)

We shall call W the transfer function of (1.1). Relation (1.7b) is a spectral representation of z;
d2(w) := W(iw)dwW(w) being an orthogonal stochastic measure such that

E{d2(w)d2(w) T} = ®liw)dw , (1.9)

where & is the spectral density given by

®(s) = W(s)W(-—s)" . (1.10)

This is an mx m-matrix of rational functions such that (i) each element of ® is analytic on the
imaginary axis, (ii) ® is parahermitian, i.e. ®(—s) = ®(s)’, (iii) ®(iw) is nonnegative definite
Hermitian for all real w, and (iv) ®(e0) <eo, Such a ® is called a spectral function [3, 4] .

In this paper we consider the following inverse problem. Let {y(t);t€ R} be a given mean-

square continuous and purely nondeterministic m-dimensional stochastic process with zero mean,

stationary increments and y(0) = 0. Then there is a spectral representation

NS ™

< ot
y(t) -f € =1 diw) (1.11)
o w
[12; p. 205], where dy is an orthogonal stochastic measure such that [9]

E {d¥(w)df(w) T} = dliw)dw . (1.12)

Here ® is an mxm-matrix of real rational functions satisfying conditions (i)—(iv) above. Setting
R := ®(o0), we also assume that (v) R—1 exists and that (vi) ®(iw) is positive definite for all real
w. The problem is to find representations (1.1) such that the output process z is equivalent to the
given process y in some sense to be specified below. Such a representation will be called a stochastic
realization.

More precisely, the system (1.1) will be called a wide sense stochastic realization of y if z




has the same spectral density ® as y and a proper stochastic realization if, for each t € (—eo,e9),

z(t) = y(t) a.s. (In the sequel we shall leave out the ‘‘a.s.”’, hence regarding such equivalent processes
as equal.) Clearly each proper stochastic realization is also a wide sense stochastic realization, but
the converse is not true.

The stochastic realization problem is related to the spectral/ factorization problem: Given a
rational spectral function ¢, find all matrices W(s) of real rational functions with all its poles in
Re(s) <0 and satisfying (1.10). Such a function will be called a stable spectral factor. Let & {-}
denote McMillan degree [8]. Then 5 (W)} > %48 {®); if there is equality we shall say that W is
minimal. We have seen that the transfer function (1.8) of any wide sense stochastic realization of
y is a stable spectral factor of the spectral density of y. Conversely any such spectral factor W is
the transfer function of an equivalence class of wide sense stochastic realizations. In fact, for any
orthogonal stochastic measure dw such that E {dW(w)dW(w)T) = Idw, the process

iwt
zm-f e i“ Wlico)dW(w) (1.13)
Y [ ]

has the same spectral density as y. Since W is a real rational matrix function analytic in Re(s) 2 O,
there is a quadruplet [A,B,C,D] of matrices such that (1.8) holds [8], with A a stability matrix.
Now let x be defined by (1.7a) and w by (1.6). Then w isofclass W and (x,z) satisfy (1.1)
as asserted. Note that [A,B,C,D] defines one wide sense stochastic realization for each w € Wy,.
Since these realizations are equivalent upto second-order properties of 2, in the sequel we shall say
that (A,B,C,D] is a wide sense stochastic realization, thereby referring to the whole equivalence
class. To avoid trivialities we shall assume that the representation (1.8) is chosen so that the
dimension of the matrix A equals §(W), i.e. we shall only consider quadruplets [A,B,C,D] for
which (A,B) is controllable and (A,C) is observable [8]. We shall call a stochastic realization
minimal it it corresponds to a minimal spectral factor. Hence, the minimal stochastic realizations
are precisely those representations (1.1) which have a state process of smallest possible dimension,
i.e. n=%§(d). In this paper we shall restrict our attention to such realizations, the basic problem
being to find all of them.

Determining all wide sense minimal stochastic realizations [A,B,C,D] is a deterministic problem
which has been studied extensively by, among others, B. D. O. Anderson (5], Faurre [11] and
J. C. Willems [32], the first of whom has named it the inverse problem of covariance generation.
To facilitate its solution we note that the spectral density of y can be written

d(s) = Z(s) + Z(-3)', (1.14)




where Z is positive real! and rational, and &(Z) =n [3, 4, 11, 32]. Let
2(s) = H(sl - F)~1G + %R (1.15)

be a minimal realization (8] of Z,i.e. F, G and H are constant matrices of dimensions nxn,

nxm and mxn respectively. Hence F is a stability matrix, (F,G) is controllable and (H,F) is
observable [8). There are computational procedures for determining (F,G,H,R) from ¢
[8, 13, 31, 38], so in the sequel we shall assume that such a quadruplet is given.

It can be shown [5] that all wide sense minimal stochastic realizations are given by

[AB.CD] = [TFT=1,T(By,B9)S, HT~1, (R%,0)5) (1.16)

where the nonsingular matrix T and the orthogonal matrix S are arbitrary, R% is the symmetric
square-root of R, and (81,82) are two matrices, nxm and nxp respectively (p is arbitrary), such

that (P,B¢,B5) satisfy the conditions

FP+PF'+ BBy +BB5=0 (1.17a)
PH'+B,R%=G (1.17b)
P is a symmetric, positive definite nxn-matrix . (1.17¢)

Conversely, any [A,B,C,D] constructed in this fashion is a wide sense minimal realization. It is

no restrictiontoset T=1 and S=1 in (1.16), i.e. to consider only realizations of the form
dx = Fxdt+ By du + Bodv (1.18a)
dz = Hxdt + R¥du (1.18b)

where w= (:') € Wm+p: In fact, all other stochastic realizations can be obtained from (1.18) by

multiplying (1.18a) by an arbitrary T and transforming w by an orthogonal transformation.

Consequently we shall be working in a fixed coordinate system, thereby identifying each transfer
function (spectral factor) W with one quadruplet [F,B,H,(R"S,O)]. Hence the wide sense problem
is reduced to determining B = (B{,B5).

The main topic of this paper is the characterization of all proper minimal stochastic realizations.
This is a probabilistic problem. In addition to the input-output map of (1.1) we need to determine
the input process w, which is no longer arbitrary; hence we shall be looking for quintuplets
[A,B,C,D;w]. For an arbitrary representation (1.1), let (82,F,P) be a probability space on which

1A real rational function 2 without poles on the imaginary axis is said to be positive real if it has
no poles in Re[s] >0 and Z(iw) + Z(—iw)’ is nonnegative definite Hermitian for all real w.




both y and w are defined, and define H(y) and H(w) to be the closed linear hulls in Lo(Q,F.P)
of {y;();t€(—ee),i=12,...,m} and {w;(t);t€ (~oo0), i=12, ...k} respectively. Since
y is given, H{y) is fixed, whereas H(w) varies with different choices of representation (1.1). For
a proper stochastic realization we will always have H(y) C H(w). We shall say that [A,B,C,D; w)
is an internal stochastic realization if Hly) = H(w) and an external stochastic realization if
H(y) # H(w), adding the attribute minimal as appropriate. Hence the internal realizations are precisely
those proper stochastic realizations which can be constructed in terms of the given process y, whereas
the external realizations require extending our probabilistic setting with an exogeneous noise
gencrator unrelated to y. Various aspects of the proper stochastic realization problem have been
studied by Akaike [1, 2], Picci [23, 24) and Rozanov [26), but here we shall give a complete
characterization of all such realizations. (In [21] we give an alternative presentation of these results
in terms of minimal splitting subspaces.) After submitting this paper we have learned about a series
of as yet unpublished papers by Ruckebusch [27—-29) containing discrete-time counterparts of some
of the results presented here; these papers provide an alternative approach to the problem.

The outline of the paper goes as follows. Se;:tion 2 is devoted to preliminaries and definitions.
In Section 3 we show that to each proper stochastic realization there is a representation (1.1) with
Re {A(A)} >0 and z =y, the dynamic relations of which evolve backward in time. These repre-
sentations, which are an important tool in our subsequent analysis, are called proper backward
stochastic realizations. |n Sections 4 and 5 the internal stochastic realizations are constructed and
classified, and it is shown that these are precisely the proper stochastic realizations for which 82 =0,
Each internal state process can be expressed in terms of two steady-state Kalman-Bucy estimates,
one filter evolving in the forward direction from time t = —co and the other in the backward direction
from t=oc. Sections 6 and 7 are devoted to external stochastic realizations. First, in Section 6,
we construct a system of differential equations in By and By which generates families of wide
sense stochastic realizations, totally ordered with respect to state covariances. In Section 7 this result
is interpreted in terms of proper stochastic realizations and a complete characterization of all such
realizations is provided.

This paper extends the results reported (without proofs) in our short note [20] .

2. Preliminaries and definitions
Let the function A : R"*N = RMXN he given by

A(P) = FP + PF' + (G = PH')R—1(G — PH")" , (2.1)
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and define the set P= {P|P'=P; A(P) <0} of symmetric nxn-matrices, where Q20 (Q > 0)
means that Q is nonnegative (positive) definite. Also introduce the subset Po = {PEP|A(P)=0}.
In the following theorem we collect some facts from Anderson [5], Faurre [11] and

Willems {32].

Theorem 2.1. The set P is closed, bounded and convex, and there are two elements P, and P*

in PO such that
P,<P<P* forall PEP . (2.2)

Moreover, P is the set of all solutions P of (1.17), and Po is the set of all such solutions for which
By =0.

Each P € P can be interpreted as the covariance matrix (1.4) of the corresponding stochastic
realization (1.18). Consequently, there is a minimum-variance (P,) and a maximum-variance (P*)
wide sense stochastic realization, and for these realizations we have 82 = 0.

For each P € P, define the feedback matrix
Fr=F—(G-PH)R"H , (2.3)

the significance of which will be made clear below. Let the feedback matrices corresponding to
P, and P* bedenoted I', and I'* respectively. It can be shown that Re{\(l',)} <O and
R{AI*)} >0 [32, p. 360; 11, p. 53]. Consequently, for each matrix N, the Liapunov equation

MM+MI, +H'R-TH+N=0 (2.4)

has a unique solution M, (N), which is positive definite whenever N is nonnegative definite.

In fact, since (F,H) is controllable, so is (I",H). (See e.g. [36].) Likewise
—T*M-Mr*+HR-TH+N=0 (2.5)

has a unique positive definite solution M*(N) for each N = 0. Furthermore, define P+ =

{PEP|P>P,) and P_= {PEP|P<P*). Since &(iw) >0 forall real w, P, <P* [32, p. 360],

and consequently P, and P_ are nonempty.
Theorem 2.2. Let T1 and T1 be the unique solutions of the nx n-matrix differential equations

T(t) = A(TI(t)); TI(O) =0 (2.6)

and
it = A(f(e); i) =0 (2.7)

respectively, where A is given by (2.1) and A by

BTNV SN A T s eiis g mes Dl
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1

A(P) = F'P + PF + (H' = PG)R™V(H' = PG)’ . (2.8)

Then TI(t) = P, and Ti(t) = (P*)~" as t=oo. Morsover, the matrix P =P, + [M,(N)] "
belongs to P, if and only if N> 0. Likewise, P = P* — [M*(N)) =" belongs to P_ if and only if
N> 0. Finally, P* =P, = [M,(0)) =" = (M*(0)] 1.

Various versions of this theorem can be found in [7] and [11]. It provides us with a procedure
to determine all elements in P, U P_: First compute P, and P*. Then varying N over the
nonnegative cone will generate the other elements in P+ U P_. The corresponding wide sense stochastic
realizations [F,B,H,(R%,0)] can then be obtained by determining B = (B, B) from

By = (G - PH)R™% (2.92)
BB = —A(P) , (2.9b)

which is merely (1.17) reformulated.

In Section 6 another method for generating wide sense stochastic realizations is presented, which
is formulated directly in terms of B, the unknown quantity in [F,B,H',(R%,O)] . Hence the
intermediate step of determining P will be eliminated. Define § to be the set of all B = (B4,B7)
given by (2.9) as P ranges over P. Let Bp, B, and B_ be defined analugously in terms of Pp, P,
and P_. Theset By consistsofall BE B with By = 0 (Theorem 2.1). In particular, let B, and
B* be the unique elements in B corresponding to P, and P* respectively. :

All stochastic processes in this paper will have finite second order moments. Given a k-dimensional i
vector process n of this type, defined on some probability space (£2,F,P), and a subset 1 of
(—eo,00), let Hy(n) be the closed linear hull in Lo(Q2,F,P) of the stochastic variabies {nj(); €, .
i=1,2,...k). (Wewrite Hy(n) if the set 1 contains only the point t) If { is an C-dimensional ‘
stochastic vector such that ¢, € Hj(n), i=1.2,...0 we shall misuse notations slightly by writing
§E€Hjn). For { € Lp(Q,FP), let E{{ | Hy(n)} be the projection of { onto Hy(n), i.e. the wide
sense conditional mean in the terminology of Doob [10]. (We shall sometimes write £ (¢ | n(t)}
instead of E{f | He(n) }.) For simplicity let H(n), Ht-(n) and H:(n) denote H(_“P)(n),

H j(n) and H _\(n) respectively. Moreover, set ny(r) = n(t+r) — n(t), and define H "(dn) 1
and H_(dn) to be respectively Hg(n,) and H{(n). Note that if n(0) = O (which is often the case
with the processes studied in this paper), we have H_(dn) = Hin).

As mentioned in Section 1, any mean-square continuous stochastic vector process {n(t); t€ R}

(—oo,t

with stationary increments and n(0) = O has a representation of the form

2 it
nlt) = f "_s'wi dilw) (2.10)

—ot

—
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[12; p. 205], where d7} is an orthogonal stochastic measure, called the stochastic spectral measure
of n. If, in addition, n is purely nondeterministic, it has an absolutely continuous spectral
distribution [9], i.e.

E{dh(w)dilw) T} = S(iw)dw (2.11)

where S is the spectral/ density of n. If E{n(t)} =0 forall t and S =1 (identity), n is said to
be of class W. The spectral decomposition (2.10) defines an isometric correspondence between H(n)
and Lo(R,S(iw)dw) under which n(t) corresponds to (ei“’t—I)/iw; hence to any real random
variable § € H(n) there corresponds an (essentially) unique g € Lo(R S(iw)dw) such that

¢= [ stediio)

In fact, the system of functions {(ei“’t—ﬂ/iw: tER} iscomplete in Lo(RS(iw)dw) [12;p. 204].
Hence we have the following lemma which we shall need below.

Lemma 2.3. Let ¢ and n be mean-square continuous and purely nondeterministic stochastic vector
processes, defined on the whole real line R, with (jointly) stationary increments and such that
t(t) EH(n) forall tER. Let S(iw) be the spectral density of n, and assume that £(0) = 0. Then

iwt_
there is a matrix-valued function K such that < - L Kliw) € Lo(R Sliwldw) forall tER and
such that
eimt___1
b0 = [ = Kiiw)dhle) . (2.12)
) o W

If, in addition, ¢ and n are both of class W,
K(sIK(—=s)' =1 . (2.13)
The last statement follows from dg = K(iw)dn and the fact that both ¢ and n have identity
spectral densities.
3. Forward and backward stochastic realizations
Let {x(t); t€E R} be an n-dimensional wide sense Markov process, i.e.

E{x(s)IH:(x)}-g{x(s)lx(t)} for s>t (3.1)
or equivalently

E{x(snn:’(x)}-é‘{xu)|x(t)} for s<t . (3.2)

In addition, assume that x is purely nondeterministic and (wide sense) stationary. It is well-known
[11] that such a process can be described as the solution of a system of linear stochastic differential

R S




equations of the type
dx = Axdt + Bdw , (3.3)

where A and B are constant matrices, Re{A(A)} <0, and w is a vector process of class / such
that? H:(dw) 1 H:(x) for all t€ R. [In fact, A being a stability matrix implies that (3.3) has the
solution (1.3), and consequently H;'(x) c H:(dw) > H:(dw).] Moreover, the covariance matrix

P:=E {x(t)x(t)’) satisfies (1.5). The model (3.3) is clearly unsymmetric with respect to time, x(t)
being orthogonal to future increments of w, but not to past ones. Hence we shall call (3.3) the
forward representation of x.

We shall now show that x has a backward representation also, i.e. a model (3.3) with
Re{A(A)} >0 and Ht—(dw) é H:(x) for all t € R. To this end first observe that the forward
representation (3.3) can be integrated between t and s to yield

S e
x(s) = AUy (4) + f eA=Tggwir) | (3.4) §
t

where the two terms are orthogonal if and only if s> t; in this case it can be seen that (3.4) is
precisely the orthogonal decomposition

x(s) = E {xls) | H"(x)} + [x(s) — E {x(s) |H_(x)}) . (3.5)
t t

We shall use a symmetric argument to determine the backward representation. More precisely, for

s <t we shall derive a backward version of (3.4) from the decomposition
x(s) = é{x(s) | H:(x)} + [x(s) — g{x(s) I H:(x)}] . (3.6)

In view of the Markov property (4.2) and the standard projection formula [11] the first term in
(3.6) can be written E

E {x(s) | H:(x)} = E {x(s)x(t)"}E {x(t)x (1)}~ x(1) i

w PP (t=80p=1y (1) o« =PAP(s=1) (1) (3.2)
where we have used (3.4) to evaluate E {x(s)x(t)'}. From (3.7) it is clear that i
0 = PAP e (3.8) ‘
is a wide sense backward martingale with respect to the family {H)'(x)}, i.e. .
E(kls) IH(x)} = §(1) for s<t, (3.9)

2"H1 1 Hy" means “Hy and Hy are orthogonal’’.
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and using (3.3) we obtain
dt = ePAP 7t (A 4 PAYIP=Txdt + Baw] |
which, because of (1.5), may be written
gt = AP g (gw - BPTxat) . (3.10)

Lemma 3.1. Let {x(t); tE R} be the solution on (—==,) of (3.3), and let P be the covariance
matrix of x. Then the vector process W, defined by

dW = dw — B'P~ 'xdt; W(0) = 0, (3.11)
belongs to class W, and H:(d\‘&) is orthogonal to H:(x) for all t€ R.

Proof. Inserting (1.6) and (1.7a) for w and x in (3.11) yieids

® jwt
wm-f =1 Tliw)dWiw) (3.12)
¥ o W
where
Ts)=1-8P N (sl-A)~18 . (3.13)

Consequently W is a zero-mean, mean-square continuous vector process with stationary increments
and spectral density T(s)T(—s)’ and such that wW(0) = 0. Then, to see that W is of class W, it

just remains to show that

T(s)T(=s)'=1 . (3.14)
To this end first note that
T(S)T(—s)' =1 = BP~V(sl — A)~ 1B — N(s)P~ B, (3.15)
where
N(s) = T(s)B'(—sl — A")~" (3.16a)
= B'(=sl — A)~1 = B'P~ (sl - A)~1BB'(-s1 - AT, (3.16b)

In view of (1.5) we may write
BB’ = (s — A)P + P(—sl — A’)

which inserted into (3.16b) vyields

N(s) = ~B'P~ (sl — AP . (3.17)




1"

Now (3.15) and (3.17) together yield (3.14). To show that H_ (dW) L H, (x), take t; <t <t3

and form

o0
iwt jwt :
"—.1;"-—3 e “BN(iw)dw . (3.18)

E([tty) — Wity xirg)) = [

—00

W

Here we have used (3.12), (1.72) and (3.16a) to obtain (3.18). But (e~ “% — e~ By /ic; is the

Fourier transform of the indicator function X(a,B) of the interval (a,8) and, in view of (3.17),

N(iw) is the Fourier transform of —B'P"‘eAth(o o). Hence Parseval’s Theorem yields

At

E{[Wty) — Wit x(zg)} =8P [

which is zero whenever ty. t2 < t3. ©

Consequently, in view of (3.7)—(3.11), (3.6) can be written

e 1—1 k) = p—
PAP=Hs—t) (1) 4 ;—PAP

1
S[&(s) — (1)

x(s)=e
—PAP—1(s—1) ® _PAP(s—1)
=e x(t) + f e Bdwir) , (3.19)
t
which is the backward counterpart of (3.4). Since Re{M—PA'P"1)} >0 and Ht—(dW) 1l H:(x)
forall t€R,
dx = —PA'P~ xdt + Bdw , (3.20)

obtained by differentiating (3.19), is a backward representation of x. In [22, 30] it was shown
that, for arbitrary w and W of class W, the solutions on (—oo,00) of (3.3) and (3.20) have the same
second-order properties. Here we have demonstrated that, for the particular choice (3.11) of W,
these systems actually represent the same wide sense Markov process. We record this observation

in the following thecrem.

Theorem 3.2. Let {x(t); t€ R} be a vector-valued, wide sense stationary, purely nondeterministic,
wide sense Markov process with covariance matrix P. Then x has a forward representation (3.3)

with Re{A(A)} <0 and H:(dw) s H:(x) for all t€E€ R, and a corresponding backward representation
(3.20) with Ht_(dW) 1 H:(x) for all t€ R. The processes x, w and W are related as in (3.11).

In Section 1 we only considered stochastic realizations for which Re{A(A)} <0, i.e. with the
state process x written in the forward form. From what has been said above, it is clear that we will

get an isomorphic theory by reversing time. In particular, let us consider representations of the type
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dx = Axdt + Bdw (3.21a)
di = Cxdt + Ddw , (3.21b)

where Re{A(A))} >0 and H‘_(dw) 1 H:(x) for all t€ R. We shall call (3.21) a proper or a wide
sense backward stochastic realization of y, depending on whether the solution Z of (3.21) on
(—e0,20) equals y or has the same spectral density as y. Equation (3.21a) has the unique solution

o0
(1) = = f ATIE 4w (3.22)
t
on (—oo,0), and by the procedure used in Section 1 we obtain
iwt
20 = [ = Wiwoldite) (3.23)
¢ W
where
Wis)=Clsi —A)~16+D . (3.24)

If (3.21) is a backward stochastic realization of y, we must have
Wis)W(—s)' = d(s) , (3.25)

i.e. W is a strictly unstable spectral factor of ®. Conversely, each such spectral factor W is the
transfer function of an equivalence class of wide sense backward stochastic realizations; to see this
proceed as in Section 1. If W is minimal, we shall say that the realization (3.21) is minimal, only
such representations will be considered in the sequel.

Consider the problem of determining all strictly unstable minimal spectral factors (3.24) of
®. Since W(—s)W(s)' = ®(s)’, this problem is equivalent to finding all stable minimal factors W(—s)
of ®(s)’. Given the representation (1.14)—(1.15), we have

P(s) = Z(s) + Z(-s)', (3.26)
where 2 is the positive real matrix function Z', i.e.
Z(s) = G'(sl = F)~TH' + %R . (3.27)

Consequently we have reduced the problem to the one considered in Section 1. In fact, all stable
factors

Wi—s) = C(s1 + A)~1(~B) +D (3.28)

of ®(s)’ are given by
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[-A,-B,CDB) = [TFT~1 7(-B,,-B,)8,6 T~ (R% 0)S) (3.29)
where T is any nonsingular nx n-matrix, S is any orthogonal matrix of appropriate dimension
and (B4,B,) satisty
FP+PF+B,By+B,B5=0 (3.30a)
PG - ByR% = W’ (3.30b)
P is a symmetric, positive definite nx n-matrix. (3.30¢)

This the dual spectral factorization problem considered by Anderson (6] and Faurre [11]. Asin
the forward setting it is no restriction to take T =1 and S = |, i.e. to consider backward stochastic
realizations of the form (—F", (B1,85),G',(R*,0)] only; then P in (3.30) is the state covariance
matrix.

Let A be given by (2.8) and define P= {P=P' | A(P) <0} and Py= {PE P|A(P) = 0}.
By Theorem 2.1, the set P is closed, bounded and convex, and there are two elements P, and P*
in P such that P, <P <P* forall PEP. Moreover, P is the set of all solutions P of (3.30),
and Py is the set of all such solutions for which By = 0. Let B be the set of all solutions
B = (By,By) of (3.302)—(3.30b) as P varies over P, andlet B, and B* be the elements in §
corresponding to P, and P* respectively. As expressed by the following lemma (which is essentially
the same as one found in [11]) there is a one-one correspondence between P and P as well as

between B and B.

Lemma 3.3. The set of matrices (P,B4,B9) given by
ﬁ & P—1 (3.31a)

(4.8 = P~1(By,85) (3.31b)
is a solution of (3.30) if and only if (P,Bq,Bg) is a solution of (1.17). In particular, P, = P,
Pe=(P,)=1, B, = (P*)"18* and B* = (P,)" B, .

Proof. Pre- and postmultiplying (1.17a) by P=1 ard premultiplying (1.17b) by P"‘, it is seen
that P is a solution of (1.17) if and only if (3.31a) is a solution of (3.30) with (B,Bo) given by
(3.31b). The rest of the statement then follows trivially from (3.31). ©

Lemma 3.3 defines a bijective mapping between the sets B and B. This raises the question
whether to each proper minimal stochastic realization with transfer function W there is a unique
proper backward minimal stochastic realization whose transfer function is the dual spectral factor

T T RTEm————

= o

s - ol
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W, and vice versa. In general this is not true, for a spectral factor may correspond to many proper
minimal stochastic realizations (Theorem 7.1). However, we shall see that if, in addition, we require
that the two realizations have the same state space, i.e. Ht(?) = H,(x), for all t€&€ R, there is such

a one-one correspondence under mild conditions on B, and that the input processes are related as

in Lemma 3.1. Of course, taking (3.31) and (3.11) as the starting point, the families of forward and
backward proper minimal stochastic realizations are seen to be bijectively related regardless of any
condition on B.

Theorem 3.4. Let (F,G,H,R) be defined as in Section 1. To each proper minimal stochastic

realization of y of the form
dx = Fxdt + Bydu + Bodv (3.32a)
dy = Hxdt + R"du , (3.32b)

with state covariance matrix P, there is one and, if By has linearly independent columns, only

one proper backward minimal stochastic realization of the form
dX = —F'%dt + B,dU + Bydv (3.33a)
dy = G'Xdt + R*du , | (3.33b)

with state covariance P, such that (3.31) holds and Hy(X) = Hylx) for all t€ R. Conversely, to
each realization (3.33) there is one and, if §2 has linearly independent columns, only one realization
(3.32) such that (3.31) holds and Hg(x) = H(xX) for all t € R. The stochastic processes in the two

realizations are related in the following way

%(t) = P~ x() (3.34)
dd = du — B4P~ xdt; G(0) =0 (3.35a)
&V = dv — B5P~ Ixdt; ¥(0) =0 . (3.35b)

The relations (3.31), (3.34) and (3.35) define a bijective mapping between the families (3.32) and
(3.33) of forward and backward stochastic realizations.

Proof. The backward representation (3.20) corresponding to (3.32a) is
dx = —PF'P~Ixdt + B4di + Bodv (3.36a)

where, according to Theorem 3.2, U and V are given by (3.35). Then (3.32b) and (3.35a) together
yield

e R L P N R
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dy = (HP + R%BY)P~Ixdt + R*dd,
which, in view of (1.17b), is the same as
dy = G'P~ Ixdt + R¥qa . (3.36b)

Now let X be defined by (3.34). Then H,(X) = H,(x) forall t€R and X has the covariance
matrix (3.31a). Moreover, (3.34) applied to (3.36) yields (3.33) with B given by (3.31b). Secondly,

consider an arbitrary proper backward minimal realization
dx = —F'Xdt + Bydu + Bodv (3.37a)
dy = GX dt + R%dy (3.37b)

with B given by (3.31b) and Ht(;) = Ht(x) for all t€ R. Due to the last condition, there is a
nonsingular matrix S such that x(t) = Sx(t); since x and x are stationary, S is constant. Set

T = P=1S. Then, in view of (3.34), X(t) = Tx(t). Hence (3.37) can be written
d% = ~TF'T~'Xdt + TBydu + TBodv (3.38a)
dy = G'T—xdt + R%¥du . (3.38b)

Since X and x have the same covariance matrix P, we must have TPT'= P, Hence, in view of
(3.38), (3.30) holds also with (P,F’,B,G*) exchanged for (TPT', TF'T~1,TB.GT™"); in particular,
(3.30b) yields T(PG' — E, R%) = H', which together with the original (3.30b) gives us TH' = H',
We also have TF'T~1 = F*. To see this, form ﬁ{i(s) | H+(§)] for all s<t by using first (3.33)

' e —‘
—F'(s=t) ~TF'T (s—t);(t) respectively. Hence

and then (3.38); we get e (t) and e
(F)H’ = T(F')T=1H' = T(F')H’ for i=1,2,...n, andsince (H,F) is observable we must

have T =1, Therefore x = X. Then comparing (3.33b) and (3.37b), we see that u = T, and hence
(3.33a) and (3.37a) vield v = V, for the columns of B are linearly independent. Hence (3.33) and
(3.37) are identical. Finally, the converse statement is obtained in the same way starting out with

the backward realization (3.33). ©

4. The minimum- and maximum-variance realizations

The proper stochastic realizations corresponding to P, and P*, the minimum and maximum
elements of the set P, will play an important role in what follows (we shall show below that there
indeed exist such realizations and that ihoy are unique). Therefore we shall begin by providing an
interpretation of these.

Consider an arbitrary proper minimal stochastic realization of the form (3.32) and with state
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covariance P. It is well-known [35] that, for each fixed T € R, the estimate
R(t; T) = € {x(1) | H (1.4 (@) (t>T) (4.1)
is generated by the Ka/man-Bucy fillar.

dXk = FRdt + K(t = T)dip ; X(T; T)=0 (T<t<e), (4.2a)

where {rp(t) [ tE [T,e=)} is the transient innovation process, defined by3

‘ duy = R=%(dy — HXdY) ; vr(max{0,T)) = 0. (4.2b) I

1] 1

§ The matrix function K, called the Ka/man-Bucy gain, can be determined from the mairix Riccati E

! equation 4
: |

2: T=FI+IF -KK'+BB'; L(0)=P (4.3a) ;

i it

5

! K=SHR™%+8, . (4.3b) :

;.

} In the same manner, given an arbitrary proper backward minimal stochastic realization of the

‘ ’ form (3.33), it can be seen that

L § -

; Xp(tT) = E(X(t) [H, 1) (dv)) (t<T) (4.4)

| |

is given by the backward Ka/iman-Bucy filter
3 dX, = —F'Xpdt + K(T = tidiq : X (T,T) =0 (~e<t<T), (4.5a)

i where {Pr(t) ;t€ (=e,T] }, defined by

1 dip = R=%(dy — G'Rdt) ; »r(min{0,T)) =0, (4.5b) i

is the transient backward innovation process, introduced in [17). Here K is given by the dual

matrix Riccati equation i

TepE+TF-RR'+BB'; $(0)=P (4.6a)

ik
.

R=SGR-%_-B, . (4.6b)

Note that both vy and Py are normalized orthogonal increment processes [17],s0(4.2)
and (4.5) can be regarded as a pair of *’nonstationary stochastic realizations” of y. We shall now

P T T

demonstrate that the steady-state versions of these representations are indeed proper stochastic

realizations in the sense of this paper. i

5 i A W

3Our choice of initial conditions in (4.2b) and (4.5b), which are otherwise arbitrary, is to insure that
vr(0) = 0 (#7(0) = 0) for negative (positive) T.

N
e
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Theorem 4.1. There is one and only one proper stochastic realization (3.32) with state covariance
matrix P, , namely
dx, = Fx,dt + B du,
(4.7)
dy = Hx,dt + R%du, ,

and it is the steady-state Kalman-Bucy filter in the sense that, for each t€ R, x,(t), u,(t) and B,
are the limits in mean square of X(t,T), vr(t) and K(t—T) respectively as T = —eo. The innovation

process u, satisfies
H:(du.) = H:(dy) (4.8)

for all t € R, and the projection of the state x(t) of any stochastic realization (3.32) onto Ht_ (dy),
being given by

E{x(t) | H(dy)) = x,(0), (4.9)
is invariant with respect to the particular realization.

Theorem 4.2. There is one and only one proper stochastic realization (3.32) with state covarisnce
P*, namely
dx* = Fx*dt + B*du*
(4.10)
dy = Hx*dt + R%du* ,
and it is the forward counterpart (in the sense of Theorem 3.4) of the bac“ward stochastic
realization
dx, = —F'X dt + §.dﬁ.
(4.11)
dy = G'%,dt + R%da,

where X,(t), U,(t) and B, are the limits in mean square of X(t;T), #r(t) and K(T — 1)
respectively as T =, Then x* and u* are given by

x*(t) = P*X,(t) (4.12)
du*® = dii, - B,P*%,dt; u*(0)=0 (4.13)
and B, by Lemma 3.3. The backward innovation process U, has the property

H:(dﬁ.) - H;‘ (dy) (4.14)




for all t€ R, and
E{X(1) [Hy(dy)} =%, (0 (4.15)
for the state process X of any backward stochastic realization (3.33).
Before proving these theorems a few remarks are in order:
(i) Itis well-known that
E{[x() = X(t; T)) [x() = X(; T)] '} = Z(t=T), (4.16)

where I is given by (4.3); the stationarity of x insures that (4. 16) depends on the difference
t—T only. Likewise, set E {x(t; T)X(t; T)'} = [1(t ~T). Then

I(t)=P —TI(t) . (4.17)
Inserting (4.17) into (4.3) and applying (1.17) it is seen that I1 satisfies (2.6) and that
K=(G—TNH)R™% (4.18)

Hence K(t) =+ B, as t— oo by Theorem 2.2. The corresponding dual results are analogous.
Consequently one could base the proofs of Theorems 4.1 and 4.2 on Theorem 2.2, but instead we
shall offer a self-contained proof which is more direct. Note that (4.18) together with (2.6), and
its dual counterparts, imply that the filters (4.2) and (4.5) are in fact invariant with respect to the

particular realization which provides the process x (X).

(ii) The choice of (3.33) as the standard form for the backward stochastic realizations rather than
(3.36) is motivated by the dual spectral factorization problem. Relation (4.15) provides an additional
justification for this choice. As in (4.9), the left member of (4.15) is invariant with respect to
variations in the state process X. On the other hand, were we to project the state process x of (3.36)

onto the future space H:(dv). we would have
E{x(t) | H{(dy)} = P(P*)~Tx* (1), (4.19)

which does not enjoy the same invariance properties. Indeed the natural setting for the process x
is the forward, and not the backward, realization problem.

Proof of Theorem 4.1. For each fixed t€ R the process {{(r);r > —t}, where £(r) = X(t; —7), is
a uniformly integrable wide sense martingale (10], and therefore X(t; T) tends to a limit x,(t) in

mean square as T - —oo, Moreover,
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RLT) = E{x(0) | H g g (o)

=~ E{x0) | Vo g H 7 g (0V) (4.20)

in mean square [10], and hence (4.9) holds (a.s. for each t), for VT<tH (T.1) (dy) = H:(dy). Then
T tends to a limit process u, . Since v has normalized orthogonal increments, the same must
hold for u,;hence u, isof class W. In view of (4.20), I(t) and K(t), as given by (4.17) and
(4.18), tend to limits; let us call these T, and K., respectively. Consequently, x, and u, must

satisfy
dx, = Fx,dt + Kdu,
dy = Hx,dt + R%du, ,

which is a proper minimal stochastic realization of y with state covariance .. Thus 1 € P.

But since (4.16) is nonnegative definite for all t € R, (4.17) implies that P > I1_, and this holds

for all P € P, for the realization (3.32) is arbitrary. (By Theorem 7.1 there is a proper stochastic
realization for each P € P.) Therefore Il = P,, and consequently K = B,. Given P,, the matrix
B, is uniquely determined by (2.9a). Moreover, as we shall see in Section 5, u, is uniquely
determined as a causwa/ function of y through relations (5.10b) and (5.12). Hence there is only
one proper stochastic realization (3.32) with P = P_, and moreover H;(du.) < Ht_(dy). Since, in
addition, Ht—(du.) > H;(dy), (4.8) holds. Also, since x, is uniquely determined, the limit (4.20)

is independent of the choice of state process x. ©

Proof of Theorem 4.2. The statements concerning (4.11), (4.14) and (4.15) follow along the same
lines as in the proof of Theorem 4.1, just reversing time. Then the statements concerning (4.10),

(4.12) and (4.13) are a consequence of Theorem 3.4. ©

5. Internal stochastic realizations

Consider an arbitrary proper stochastic realization (3.32) and its backward counterpart (3.33).
The following lemma describes the relationship between the two input processes w and W and the

output process vy.

Lemma 5.1. Ler (w,W) be the pair of input processes defined above. Then the following relations
hold for all 1€ R.

() HI(dy) CHT(dw) and M (dy) C K (d®)

(i) Hiy) C H(w)

(i) H(dW) C HT(dw) and M. (dw) C H{(dW)




(iv) H(W) = H(w)

Proof. Relations (i) and (ii) are trivial consequences of (1.1b) & (1.3) and (3.21b) & (3.22),
recalling that 2 =Z = y. To obtain (iii), insert first (1.3) and then X = P"’x, as given by (3.22),

into (3.11). Then (iv) is proven by letting t = = in the first of relations (iii) and t = —eo in the

second. © ‘

Since the input process w is of class &', (i) implies that the future increments of w are
+ -
orthogonal to the past increments of vy, i.e. H‘ (dw) 1 H‘ (dy) for all t€ R. In the same manner

it can be seen that H:(dW) 1 H:(dy) for all t. It follows from Theorem 5.5 below that the

innovation process u, and the backward innovation process U, are the only input processes to
satisfy relations (i) with equality; they satisfy (4.8) and (4.14) respectively. The only thing we can
say about the future space of u® is that H:(du') = H:(dy), which follows from Theorem 5.5.
Hence we have again detected a certain lack of symmetry between the minimum- and maximum-
variance realizations.

We shall now consider those realizations for which the converse of relation (ii) holds,

Definitions. The proper forward or backward stochastic realization [A,B,C,D; w] of y is said to

be internal if Hiw) = H(y). If H(w) # H(y), the realization is said to be external.

For an internal stochastic realization, the input process w can be expressed in terms of the
output y. Therefore, if x is the state process, x(t) € H(y) for all t € (—oo,00). In view of Lemma
5.1 (iv), the backward counterpart of any internal (forward) realization is also internal. Hence, in
the sequel, we shall restrict our attention to forward realizations, and only consider backward ones
when there is an interplay between the forward and backward settings. We now turn to the character-

ization of the set of internal realizations.

Theorem 5.2. A proper stochastic realization of v is internal if and only if it has a square transfer

function W, i.e. W(s) /s mxm,

Proof. The proof consists of two parts. First we show that H(w) = H(y) if and only if W has a
left inverse. Secondly we show that W has a left inverse if and only if it is mxm,
(i) Assume that w(t) € H(y) for all t € R. Then there is a representation

iwt
w(t)'f g k.:1 Kliw)d(w) (5.1)

-0

satistying the conditions of Lemma 2.3. Therefore, since the stochastic spectral measure is unique,
dw = K(iw)dy. But




dy = W(iw)dw , (5.2)

for y = 2 satisfies (1.7b), and consequently
aW = K(iw)W(iw)dw . (5.3)
Postmultiply (5.3) by dw!, take expectation, and note that E {dwdw') = Idw to see that
K(s)W(s) = 1 (5.4) |

by analytic continuation. Hence W has a left inverse. Conversely, assume that W has a left
inverse K. Then (5.3) holds, and, in view of (5.2), we have (5.1). Hence w(t) € H(y) for all

t € R, and therefore H(w) = H(y) (Lemma 5.1 (ii)).

(i) An mxk rational transfer matrix W(s) has a left inverse if and only if p{W} = k, where p
stands for rank, defined with respect to the field of rational functions [34; p. 162, Theorem 5.5.3] .
Therefore it remains to show that p{W} = k if and only if k=m. To this end, apply Sylvester’s i
inequality (34; p. 40] to (1.10) to obtain 7.

p{W(s)} +p{W(=s)'} —k<p{®} <min[p{Wl(s)}, o {(W(=s)'}], .
which can be written

2p{W}—k<m<p{W) , (5.5)

for p{®)} = m. Consequently, if p{W} =k, we have k = m. Conversely, if k =m, (5.5) implies i
that p(W}=k. ©D §

Corollary 5.3. A proper minimal stochastic realization in the standard form (3.32) is internal if i
and only if Bg=0.

Proof. The transfer function of (3.32) is :
Wis) = H(sl - F)~1(B4,B,) + (R*,0), (5.6)
which is square if and only if Bo=0. ©

Consequently the internal stochastic realizations in standard form are precisely the representations

of the type
dx = Fxdt + Bdu (5.7a)
dy = Hxdt + R%du (5.7b)

among which we have the minimum-variance realization (4.7) and the maximum-variance realization (4.10).
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Theorem 5.4. There is a one-one correspondence between the family of internal realizations (5.7)
and the set Po of solutions of the algebraic Riccati equation A(P) = 0. The input process u of
(5.7) is given by

ei:.m_1 .
ult) = f & =1 wliwidd | (5.8)
W
where W is the transfer function of (5.7).

Proof. Each stochastic realization (5.7) has a state covariance matrix P which belongs to P, since
82 = (. (Theorem 2.1). Hence it remains to show that to each P € Po there is one and only one
proper stochastic realization (5.7) and that u is given by (5.8): To each P € P there is one and
only one spectral factor of the form (5.6), namely the square factor

W(s) = H(sl - F)~ 1B + R%, = 9)

for B is uniquely determined by (2.9a). Since R is nonsingular, (5.9) has an inverse w—1. First
define u by (5.8). Then dy = W(iw)du, which transformed to the time domain yields (5.7).
Secondly, let u be the input process of a proper stochastic realization with transfer function (5.9).
Then dy = W(iw)du, and hence u is given by (5.8). ©

The internal realization (5.7) can be inverted in the time domain also by rewriting it in the form

dx = M'xdt + BR™%dy (5.10a)
du = R—%(dy — Hxdt) (5.10b)
where, in view of (2.9a),
M'=F—BR %H (5.11)

is the feedback matrix (2.3). Once there is a solution of (5.10a), u is given by (5.10b). For the

two extreme realizations, corresponding to P, and P*, such solutions are immediate, namely

t
x(t) = f e +(t=Tg_r—Y%dy(r) (5.12)
and
x‘(t)--—f o (=Tlgep=%gy(r) (5.13)
t

respectively. In fact, all eigenvalues of I', (I'*) have negative (positive) real parts. (See Section 2.)
Then u, and u* can be determined from (5.10b).
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Other internal stochastic realizations can now be handled by integrating stable modes over
the past and unstable over the future, provided that the matrix I' has no eigenvalues on the imaginary
axis. However, since P, <P* [32, p. 360], no such eigenvalues occur for Po-realizations (33, p. 630;

Remark 19]. In fact the solution is surprisingly simple.

Theorem 5.5. Consider an internal stochastic realization (5.7). Let Y (I1™) be the projection
operator onto the invariant subspace spanned by the eigenvectors corresponding to eigenvalues of ’
the feedback matrix (5.11) with positive (negative) real parts. Then ,

x(t) = N x () + B¥x* (), (5.14)
where x, and x* are given by (5.12) and (5.13). The input process u Is given by
du=R™%[dy — HN"x, ()dt — HIT*x* ()dt] . (5.15)

The proof of Theorem 5.5 is based on the following lemma.

Lemma 5.6 (J.C. Willems). Let PE Po. and let N* and 1™ be defined as in Theorem 5.5. Then
N+~ =1 and

P=N"P, +N*P* . (5.16)

Moreover, with T', and T'* defined as above,

N r.,n"=N"T, and n'ren*=ntre . (5.17)

In view of the fact that P* — P, >0 and (H,F) is observable (see Section 1), this result

is an immediate consequence of Theorem 6 and Lemma 8 in [33].

Proof of Theorem 5.5. Let P be the state covariance matrix of the stochastic realization (5.7).
Hence P € Py (Corollary 5.3). Since (T™)2 =1~ and N™T* = 0, we have NP = NI"P, from
(5.16). Consequently, in view of (2.9a) and (5.11),

n-s=n-s, (5.18a)
n—r=nT,=n"T.n", (5.18b)

where in the last relation we have also used (5.17). Hence, premultiplying (5.10a) by 1™ and

using (5.18), it is seen that 17 x(t) satisfies the differential equation
di = I T,tdt+ N~B, R~ *ady (5.19)

on (—eoeo). But I17x,(t), too, satisfies (5.19) on (—ee,e0), To see this, use (5.17). Therefore,
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since (5.19) has a unique solution on (—eo,%0), we must have 1™ x(t) = [17x,(t) forall tER. In
the same way we show that {T*x(t) = T*x*(t). Hence, (5.14) follows from Tt + M~ =1 (Lemma 5.6).

Then insert (5.14) into (5.10b) to obtain (5.15). ©

It follows from (5.12) and (5.13) that x,(t) € H_ (dy) and x*(t) € H:(dy) for each tER.
Therefore, (5.14) decomposes x(t) € H(y) into two components, one in H't‘(dy) and one in H:(dy).
In view of (4.8) and (4.14), we can acquire symmetry between past and future by using (3.34) to

rewrite (5.14) in the form
x(t) = M x, (1) + TP )~ %, (1) . (5.20)

Consequently, the state process of any internal stochastic realization can be expressed in terms of
the steady-state forward and backward Kaiman-Bucy estimates, x, and X,, and therefore it can be
constructed from a linear comibination of the filters (4.2) and (4.5), by taking the limit in quadratic

mean.

6. Families of totally ordered stochastic realizations

Considering minimal stochastic realizations in the standard form (3.32) leaves only the matrix
B= (81,82) and the input process w = (3) to be determined, the parameters (F,G,H,R) being
given. This section will be devoted to studying the set B of feasible matrices B, defined in Section 2;
finding w will be the topic of Section 7.

It was shown in Section 4 (Theorem 4.1) that

B, = lim K(t), (6.1)

t=>o0

where K is the Kalman-Bucy gain function. This fact together with the following theorem provide
us with a means to determine B, directly without first having to obtain P, .

Theorem 6.1 (Kailath-Lindquist). Let (K,Q) be the unigue solution on [0,%0) of the system of
matrix differential equations

K=-QQ'H'R-% . K(0)=GR—% (6.2a)
Q=(F-KR=%H)a: Q(0)=GR™% . (6.2b)

Then K is the Kalman-Bucy gain function. The filter covariance function 11, defined in Section 4

(Remark (i)), satisfies

f=QQ" ; MO)=0 . (6.3)
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Note that, although different realizations (3.32) yield different Riccati equations (4.3) [but
the same filter (4.2)], the non-Riccati algorithm (6.2) is invariant over P, depending only on the
known quantities (F,G,H,R). If needed, P, can be determined as the limit of II(t) as t—> o
(Theorem 2.2), where II is generated by either (2.6) or (6.3). The system (6.2)—(6.3) is precisely
the algorithm derived in [17] by using the transient backward innovation process (4.5b) and in [16]

by factoring the matrix differential equation (4.3). A dual non-Riccati algorithm generating the
backward Kalman-Bucy gain K and the backward filter covariance TI can be derived analogously

by using the forward innovation (4.2b) or alternatively from (4.7) by applying the technique of [16] ;
formally it can be obtained by merely exchanging (F,G,H,R) for (F’,H’,G’,R) in (6.2).

It can be seen that K(t) approaches B, from outside of B. In fact, as one can see by comparing
(2.9a) and (4.18), K(t) is related to II(t) as B, to P,, and, in view of (6.3), IT is monotonely
nondecreasing starting out with 0 & P at t= 0; hence II(t) <P, for all t. Here we shall show that 3
there are equations similar to (6.2) whose trajectories, with the proper initial conditions, lie entirely f
inside B. These equations will consequently generate families of wide sense stochastic realizations. ‘

Again the basic idea is to eliminate the need of going via the auxilliary quantity P.

Theorem 6.2. Let [F,BO,H,(RV’,O)] be an arbitrary wide sense minimal stochastic realization of
y in standard form, and let 6 — B(6) = [B1(61,B5(6)] be the unique solution on (—eo,) of the g

system of matrix differential equations

dB,

— =B,ByH'R™% (6.42)

& e

dB ;
50—2 = (F — B{R—%H)B, (6.4b) I

with initial condition B(0) = By. For each 6 € (—oo,20), let P(6) be the unique solution of the

Liapunov equation
FP + PF’ + B(6)B(6)’ = 0. (6.5) 1

Then, for each 0 € (—so,0), [F,B(8),H,(R",0)] is a wide sense minimal stochastic resiization of

y Wwith state covariance matrix P(8). This family of realizations is totally ordered in the sense that
P(6o) <P(64) for 64<6,. /f BoEB_,B(6) > (B,,0) as 6 >e=,and if BoEB_, B(6)~>(B*,0)
as @ ~ —oo, The function 6 - P(6) satisfies the differential equations (6.7) and

dP
—-— = B~ B’ ; 6.6

and also conditions (iii) and (iv) of Lemma 6.3 where here Py may be any point on the trajectory




P(O); o< f <o),
The proof of this theorem is based on the following lemma.

Lemma 6.3. Let A be defined by (2.1). Then, for each Pq € P, the matrix differential equation

dP
T W ) P = 6.
a0 A(P(6)) (0) Po (6.7)

has a unique solution on (—o=,), such that (i) P(6) € P for all 8 € (—e=), (ii) Pl6,) < P(e,)
for 64 <67, (iii) if PoE€P_, P(6) =P, as 0 =0, and (iv) if Py€ P*, P(6) = P* as 6 = —oo,

Proof. First note that (6.7) can be replaced by the system

= u@ArgUEY ; PlO) =Py (6.8a)
-r@we) ;. Vo1, (6.8b)

where I'(8) is the feedback matrix (2.3) corresponding to P(6). To see this, reformulate (6.7) to
read

g% = (F~GR™TNIP+P(F = GR™H)' + PH'R-THP + GR™ G,

and use the differentiation technique employed by Kailath in [15], i.e. observe that

2
:’-’;-; = I'(0) %g + ‘:—'gr(a)' ; gg (0) = A(Pg) ,
and integrate to obtain (6.8).

Clearly the Riccati equation (6.7) has a unique solution locally in the neighborhood of 6 = 0.
In fact, at least for small 6, P(6) = Y(8)X(0)"1, where the nx n-matrix valued functions X and
Y satisfy a linear system of differential equations such that )((0)’1 exists for sufficiently
small 6 (8, p. 1566). Since Po € P. A(Pg) <0, and hence, in view of (6.8a), the condition

dP
=<0 6.9
a6 (6.9)

holds along this trajectory. Consequently, (6.7) implies A(P(0)) < 0, i.e. the trajectory is contained

in the bounded (Theorem 2.1) set P. Hence the solution can be extended to the whole real line,
for P(8) will never leave P. Since A is locally Lipschitz, this solution is unique. This also proves
(i), and (ii) is a consequence of (6.9).

To prove (iv) we use an argument similar to that in Willems [33, p. 631]. In view of the fact
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that A(P,) <0, S(8) := P(8) — P, is the solution of

Bar.s+srL+SHR™IHS ; 501 =Py P, .

Since S(0) >0 (for Pg€ P,) and S <0 (by (6.9)), S(6) >0 for 6 <0. Consequently S~
exists on (—o0,0]. Let M, be defined as in Theorem 2.2, and define V : = =t M, (0). Itis

easy to see that V satisfies

:-%’ = I,V - VI,

on (—0,0]. Since Re{A(-T",)} >0, V(6) =0 as § = —oo, and hence S(6) = [M.(O)]’1 =P* P,
(Theorem 2.2). Therefore P(8) = P* as 6 = —oo, This proves (iv). The proof of (iii) is analogous;
just exchange substar (,) by superstar (*) everywhere and (—=,0] for [0,%). (Now S(0) <O for
620) o

Hence, given any Pg in P+ N P_, we may construct a trajectory TC P extending from P*
through Pg to P, sothat T isa totally ordered set of matrices P satisfying (1.17). The only
difference between (2.6) and (6.7) is the initial conditions (0 € P); the differential equation is the
same. |ts critical points are precisely the elements of Py, one of which (P,) is locally stable in the
forward direction and another of which (P*) is stable in the backward direction (cf [33]). Note,
however, that (6.2) and (6.4) are not exactly the same, although they are derived from the same
differential equation. A dual (backward) version of (6.1) can be obtained by factoring (2.7), with
T(0) € 7, as above.

Proof of Theorem 6.2. Let P() be the state covariance of the initial realization [F,BO,H,(RV’,O)] -
and let {P(0); —oo <0 < oo} be the trajectory through Pg defined by Lemma 6.3. Define B(6) as

B4(0) = [G — P(O)H') R—% (6.10a)
Bo(6) = U(6)(Bg)s . (6.10b)

where U is given by (6.8b). Then (6.6) and (6.4a) follow from (6.8a) (for A(Pg) = —(Bg)2(Bg)3)
and (6.4b) is a consequence of (6.8b) and (6.10). A local Lipschitz condition insures uniqueness.

In view of (6.6) and (6.7), we have B2(0)B5(6)' = —A(P(6)), which together with (6.10a) yields
(6.5). Since Re{A(F)} <O and (F,B(6)) is controllable (for (F,Bg) is), (6.5) has a unique positive
definite, symmetric solution [8]. This fact together with (6.5) and (6.10a) insures that (P(6)B(6))
satisfies (1.17), and consequently [F,B(8) H,( RV',O)] is a wide sense stochastic realization with
state covariance P(0). By Lemma 6.2, P(#) satisfies conditions (ii)—(iv), and obviously the last two

N
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conditions hold for any Pg on the trajectory {P(6); —ee <6 <o}, Finally, the fact that B4(60)
tends to B, (B*) as 6 — o (6 = —o0) under the stated conditions, follows from conditions (iii)
and (iv) and (6.10a). Since 9F =0, (6.6) implies that Bp(6) +0 & 6= e, O

In the next section we shall interpret Theorem 6.2 in terms of proper stochastic realizations.

7. External stochastic realizations

The following theorem gives a complete characterization of all proper minimal stochastic

realizations.

Theorem 7.1. Let
dx = Fxdt + Bydu + Boav (7.12)
dy = Hxdt + R%dy (7.1b)

be a proper minimal stochastic realization of 'y, and let W (s) and Wz(s) be defined by

Wy(s) = H(sl - F)=1B, + R¥% (7.2a)
Wols) = H(sl — F1~ 18, . (7.20)
Then
W(s) = [Wq(s),Wq(s)] (7.3)

is @ minimal stable spectral factor of the spectral density ® of y, and the input processes are

given by
% lwt T iwt
ut) = [ =1 wyio)e=iwldf(w) - f € 1wy NliwWaliwldiiw)  (7.4b)
-0 @ -—00
- .i(.)t_1
vit = [ == Wal-iwo) o= Niwldiw) + 2(0 (7.40)
. .}

where 2 is 8 mean-square continuous, purely nondeterministic stochastic vector process with
stationary increments, zero mean, spectral density

W(s) = 1 = Wo(=s)'®~ (s)Wols) |, (7.6)

and 2(0) = 0. Moreover, V(iw) > 0 for all real w and H(z) 1 H(y); we shall call 2 the exogeneous
input component. Conversely, for each minimal stable spectral factor (71.3) of ®, there is a

VL g Nt N




minimal proper stochastic realization (7.1) with u and v given by (7.4), z being an arbitrary

stochastic vector process with all the properties prescribed above.

Proof. 1t was shown in Section 1 that, with (7.1) given, (7.3) is a minimal stable spectral factor of
& this result is restated here for completeness only. To see that u and v are given by (7.4), first

decompose v as
vit) = E{v(t) | H(y)) +z(t) . (7.6)

Then H(z) 1 Hly). Given the properties of v and y described in Section 1, it is easy to see that
the first term in this decomposition is a mean-square continuous, purely nondeterministic vector
process with stationary increments, so the same must hold for z;in addition, z has zero mean and

2(0) = 0. Hence, since )
dy(w) = W, (iw)dl, (w) , (2.7)

where dﬁ. is the stochastic spectral measure of the innovation process u, and W, is the transfer

function of (4.7), and in view of Lemma 2.3, (7.6) can be written f
- eic.:t_1 " 14
v(t) f Z(tw)du.(w) +f - dz(w) , (7.8)
oo W

for some Z to be determined. Let ¥ denote the spectral density of the process z. Clearly there

is a representation
d2(w) = Tliw)di(w) , (7.9)

where dji is the stochastic spectral measure of a process u of class W such that H(u) 1 Hly),
and T(s) is a spectral factor of W(s). Then (7.8) can be written x

dv = Z(iw)dd, + Tliwldd . (7.10a) i
Therefore, inserting (7.7) and (7.10a) into ,
df = Wyliw)dl + Wyliwldv |, (2.01)
which is (7.1) rewritten in terms of spectral measures, and solving for dd, we obtain ,

dli = X(iw)dl, + Y(iw) Tliw)di , (7.10b)

where i
X(s) = W7 HsW, (s) = Wi N sIWq(s)2(s) (2.12) :
» !
Yis) = =Wy HsWals) | (7.13a) | (8
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for the matrix R being nonsingular insures that Wy has an inverse. Since both (3) and (:') are
vector processes of class (W, the coefficient matrix function of (7.10), i.e.

X(s) Y(s)T(s)
K(s) = ‘
Z(s) T(s)

satisfies relation (2.13) of Lemma 2.3, i.e.

X(s)X(=s)' + Y(s)T(s) T(—s)'Y(=s)' =] (7.14a)
X(s)Z(—s)' + Y(s)T(s)T(—s)'=0 (7.14b)
Z2(s)2(—s)' + T(s)T(—s)' =1 . (7.14¢)

Then inserting (7.12) into (7.14b) and applying (7.14c), we have

2(s) = Wol—s)W7 N (=s)' | (7.13b)
which inserted into (7.12) yields

X(s) = Wy(—8)W7 1 (=s)" . (7.13¢)

To obtain this, we have used the fact that

B(s) = Wqls)W (=)' + Wp(s)Wo(=s)' . (7.15)

Now (7.10) together with (7.7) and (7.13) vield (7.4), and (7.13b) and (7.14c¢) give us (7.5), for
T(s)T(—s)' = W(s). By using the matrix inversion lemma [14, p. 124] , we can see that

W(s) = [1+Wo(—s)WT H(—s)W7 ‘(sIWql(s)) ! . (7.16)

Hence W(iw) >0 for all real w.

Secondly, assume that a minimal stable spectral factor (7.3) is given; from it we can determine
a quadruplet [F,(B,,Bz),H,(RV',O)] . Let z be an arbitrary mean-square continuous process with
stationary increments, zero mean, and spectral density (7.5), and such that 2(0) =0 and H(z) 1 H(y).
Since z has a rational spectral density, it is purely nondeterministic (8] . Define u and v by
(7.4). Then the corresponding stochastic spectral measures d(i and dv are given by (7.10) with
X,Y,Z and T defined by (7.13) and (7.9). Straight-forward calculations using (7.15) show that
X,Y,Z and T satisty (7.14), and consequently (3) is a process of class . Finally, with the help of
(7.15), we can see that dU and d¥ thus defined satisfy (7.11) (the z-components cancel), and
therefore (7.1) is a proper stochastic realizationof y. ©
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Theorem 7.1 provides us with an alternative proof of the “only if"’ part of Corollary 5.3.
(Theorem 5.5 gives an alternative proof of the “if* part.) In fact, since W(iw)>0 for all real w,
the exogeneous input component z is never identically zero. Therefore, unless Bo = 0, the output
of (7.1) contains a component orthogonal to H(y).

We are now in a position to interpret Theorem 6.2 in terms of proper minimal stochastic
realizations. Consider an arbitrary such realization

dx = Fxdt + (Bo)1dt.l0 + (Bo)zd\lo

(2.17)
dy = Hxdt + R%dug

with exogeneous input component 2 having spectral density VYols). Let Tp(s) be asquare
spectral factor of Wq(s) and define

7wt
ute = [ =1 1" Niwndigle | (7.18)

(Since Voliw) >0 forall w, Tpls) has an inverse.) Then, u € Wy, where k is the number of
columns of (Bply. Let F be the sigma-algebra generated by {y(t), u(t); t€ R} and form the
probability space (2,F,P) on which (7.17) is defined. Then {7.17) gives rise to a family of proper

minimal stochastic realizations

dXO = FXodt + B](o)dUO + Bz(o)d\le

(7.19)
dy = Hxgdt + R%dug ,

which are defined on the same probability space (2,F,P) and which are tots!ly ordered in the

sense that the state covariance function P(@) = E {xo(t)xom'} is monotonely nonincreasing in 6.

In fact, for each 6 € [—eo,00] , define Wy(s; 6) and Wo(s; 6) by inserting [B4(6), B5(6)], generated

by (6.4), into (7.2), and let

? ot
zgtt)= [ 8 —1 Tyliwldile) (7.20)

where Tg(s) is a square spectral factor of
Wy ls) = 1 = Wol—s; )@~ V(s)Wols; 6) . (7.21)

(We may for example take all Tg to be minimum phase.) Then define up and vy by inserting

Wqls; 0), Wals; 0) and z4 into (7.4). Hence xg(t), ug(t) and vg(t) belongto Hly, u) for all t
and all 6. If Bg€ B_, the family (7.19) will contain the steady-state Kaiman-Bucy filter (4.7): if
BpEB 4+ it will contain the maximum-variance model (4.10). Finally, if Bp € Bg. (7.19) will only

k' vhig,

e e o =

B




contain one realization, (7.17) itself.
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